1. He Z, Chen J, Chen Z, Zhang T. An online generalized multiscale approximation of the multipoint flux mixed finite element method[J]. Journal of Computational and Applied Mathematics, 2024, 437: 115498. 2. He Z, Chung E T, Chen J, Chen Z. Adaptive generalized multiscale approximation of a mixed finite element method with velocity elimination[J]. Computational Geosciences, 2021, 25(5): 1681-1708. 3. He Z, Chen H, Chen J, Chen Z. Generalized multiscale approximation of a mixed finite element method with velocity elimination for Darcy flow in fractured porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113846. 4. He Z, Chung E T, Chen J, Chen Z. Generalized multiscale approximation of a multipoint flux mixed finite element method for Darcy–Forchheimer model[J]. Journal of Computational and Applied Mathematics, 2021, 391: 113466. 5. Hou J, Yan W, Hu D, He Z. Robin-Robin domain decomposition methods for the dual-porosity-conduit system[J]. Advances in Computational Mathematics, 2021, 47: 1-33. 6. Chen J, Chung E T, He Z, Sun S. Generalized multiscale approximation of mixed finite elements with velocity elimination for subsurface flow[J]. Journal of Computational Physics, 2020, 404: 109133. 7. Liu X, He Z, Chen Z. A fully discrete virtual element scheme for the Cahn–Hilliard equation in mixed form[J]. Computer Physics Communications, 2020, 246: 106870. 8. 侯江勇, 胡丹, 徐金虎, 何正康. 双重介质 Stokes 模型的改进变分时间步格式 (英)[J]. 工程数学学报, 2020, 36(6): 721-732. 9. He Z, Li R, Chen J, Chen Z. The discrete duality finite volume method for a class of quasi‐Newtonian Stokes flows[J]. Numerical Methods for Partial Differential Equations, 2019, 35(6): 2193-2220. 10. Chen J, Sun S, He Z. Homogenize coupled Stokes–Cahn–Hilliard system to Darcy's law for two-phase fluid flow in porous medium by volume averaging[J]. Journal of Porous Media, 2019, 22(1). 11. He Z, Chen J, Chen Z. Efficient linearly and unconditionally energy stable schemes for the phase field model of solid-state dewetting problems[C]//International Conference on Computational Science. Cham: Springer International Publishing, 2018: 102-112. |